Gypsy Moth

Lymantria dispar (Linnaeus) Lepidoptera: Lymantriidae

Fleischer, S. J.; Carter, J.; Reardon, R.; Ravlin, F. W. 1992. Sequential sampling plans for estimating gypsy moth egg mass density. NA-TP-07-92. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Northeastern Area; 12 p.

Objective: To develop a sequential sampling plan for classifying egg mass density into three categories for two land classifications.

Abstract: The gypsy moth was introduced into Medford, Massachusetts in 1869, and is now a major defoliator of hardwoods throughout the northeastern USA and Canada. Defoliation reduces tree growth and vigor and in combination with other stress factors can cause excessive tree mortality. A sequential sampling plan was developed for estimating *L. dispar* egg mass density in forested and urban-suburban habitats. Sequential sampling decision plans for three egg density thresholds (250, 500, and 1000 eggs per acre) are presented and are based on a 100-m^2 sample plot.

Sampling Procedure:

<u>Forested habitats:</u> Take a minimum of 4 and maximum of 10 plots, in which you locate and record the number of egg masses found on all plants and rocks in the understory. Use binoculars to examine taller objects, if necessary. The sum of samples is compared to a range of values for the corresponding sample number in the table for each management threshold selected. Continue sampling until a decision is met for one of the three management thresholds (Table 2).

The plan gives the same pest management decision in 79-84% of the areas that were surveyed using current operational techniques. This rate of success is achieved with a labor savings of 40%. Only 2-3% of the areas were classified improperly.

<u>Urban and suburban habitats</u>: A suburban habitat is defined as an area with a minimum of one house per 4 hectares. In these environments, the influence of man-made objects causes egg mass distributions to be aggregated. The sequential sampling plan is presented in Table 3. Take a minimum of six 100- m^2 (1/40 acre) plots where you locate and record the number of egg masses found on all trees, rocks, and man-made objects. Use binoculars to examine taller objects, if necessary. The sum of samples is compared to a range of values for the corresponding sample number in the table for each management threshold selected. Continue sampling until a decision is met for one of the

three management thresholds. Appendix 1 provides the equations used to generate the sequential plan tables.

The plan gives the same pest management decision in 90-100% of the areas that were surveyed by using current operational techniques. This rate of success was achieved with a labor savings of 49%. Only 6% of the areas were classified improperly.

Note: The frequency distribution and damage thresholds must be known as the frequency distribution is used to estimate the probability of being above or below the threshold.

Tables:

Threshold (Egg masses/ acre)	Sample Number (1/40 acre)	Stop Sampling (below threshold)	Continue Sampling	Stop Sampling (above threshold)
		Cumulative Egg Mass Count		
250	4	0-6	7-42	>42
	5	0-12	13-48	>48
	6	0-18	19-54	>54
	7	0-24	25-60	>60
	8	0-30	31-66	>66
	9	0-36	37-73	>73
500	4	0-15	16-81	>81
	5	0-27	28-94	>94
	6	0-39	40-106	>106
	7	0-52	53-118	>118
	8	0-64	65-130	>130
	9	0-76	77-143	>143
1000	4	0-18	19-178	>178
	5	0-43	44-202	>202
	6	0-67	68-227	>227
	7	0-92	93-252	>252
	8	0-116	117-276	>276
	9	0-141	142-301	>301

Table 2.—Sequential sampling decision charts for three management thresholds in continuously forested eastern hardwoods.

Threshold (Egg masse acre)	Sample sa/ Number (1/40 acre)	Stop Sampling (below	Continue Sampling	Stop Sampling (above	
del ej	(nev anne)	threshold)		threshold)	
		Cumulative Egg Mass Count			
250	6	0-3	4-71	>71	
	7	0-9	10-77	>77	
	8	0-15	16-83	>83	
	9	0-21	22-89	>89	
	10	0-27	28-95	>95	
	11	0-33	34-101	>101	
	12	0-39	40-107	>107	
	13 14	0-45 0-51	46-113	>113 >119	
	14	0-57	52-119		
	15	0-57	58-125	>125	
500	7	0-6	7-159	>159	
	8	0-18	19-171	>171	
	9	0-30	31-182	>182	
	10	0-42	43-194	>194	
	11	0-53	54-206	>206	
	12	0-65	66-218	>218	
	13	0-77	78-229	>229	
	14	0-89	90-241	>241	
	15	0-100	101-253	>253	
	16	0-112	113-265	>265	
	17	0-124	125-277	>277	
	18 19	0-136 0-148	137-288 149-300	>288 >300	
	20	0-148	160-312	>300	
	20	0-17 1	172-324	>324	
	22	0-183	184-335	>335	
	22	0-105	104-555	2000	
1000	7	0-10	11-334	>334	
	8	0-34	35-359	>359	
	9	0-59	60-383	>383	
	10	0-84	85-408	>408	
	11	0-108	109-432	>432	
1	12	0-133	134-457	>457	
	13	0-158	159-482	>482	
	14	0-182	183-506	>506	
	15	0-207	208-531	>531	
	16 17	0-231	232-555	>555	
	17 18	0-256 0-280	257-580 281-604	>580	
	18	0-305	306-629	>604 >629	
	20	0-329	330-654	>654	
	20	0-354	355-678	>678	
1	22	0-379	380-703	>703	
	23	0-403	404-727	>727	
	24	0-428	429-752	>752	
	24	V-420	429-102	2132	

Table 3.—Sequential sampling decision charts for three management thresholds in <u>urban/suburban habitats</u>.

Appendix 1. Equations used to generate sequential sampling plans for 1/40th acre fixed plot samples in various habitats.

Threshold (EM/acre)	Decision Stop Line ^a		
	Continuously Forested	Urban/Suburban Habitat ^b	
	Habitat		
250	y = 6.095x ± 17.722	y = 6.089x ± 34.013	
500	y = 12.178x ± 32.706	y = 11.781x ± 76.258	
1000	y = 24.580x ± 79.461	y = 24.576x ± 162.128	

^aDecision stop line in the form $y = mx \pm b$, where y = cumulative sum required to stop sampling, m is the slope, x is the sample number and b is the intercept. The positive value of the intercept gives the upper stop line and the negative value gives the lower stop line.

^bDefined as \geq 1 house per ten acres.